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AFIT/GCE/ENG/05-07 

Abstract 

Secure electronic communication is based on secrecy, authentication and 

authorization.  One means of assuring a communication has these properties is to use 

Public Key Cryptography (PKC).  The framework consisting of standards, protocols and 

instructions that make PKC usable in communication applications is called a Public Key 

Infrastructure (PKI).  This thesis aims at proving the applicability of the Simple Public 

Key Infrastructure (SPKI) as a means of PKC. 

The strand space approach of Guttman and Thayer is used to provide an 

appropriate model for analysis.  A Diffie-Hellman strand space model is combined with 

mixed strand space proof methods for proving the correctness of multiple protocols 

operating in the same context.  The result is the public key mixed strand space model.  

This model is ideal for the analysis of SPKI applications operating as sub-protocols of an 

implementing application. 

This thesis then models the popular Internet Transport Layer Security (TLS) 

protocol as a public key mixed strand space model.  The model includes the integration of 

SPKI certificates.  To accommodate the functionality of SPKI, a new protocol is designed 

for certificate validation, the Certificate Chain Validation Protocol (CCV).  The CCV 

protocol operates as a sub-protocol to TLS and provides online certificate validation. 

The security of the TLS protocol integrated with SPKI certificates and sub-

protocols is then analyzed to prove its security properties.  The results show that the 

modified TLS protocol exhibits the same security guarantees in isolation as it does when 

executing its own sub-protocols and the SPKI Certificate Chain Validation protocol.
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SIMPLE PUBLIC KEY INFRASTRUCTURE PROTOCOL ANALYSIS AND DESIGN 

 

I. Introduction 
 

Diffie and Hellman provided the foundation of public key cryptography in the 

1970s in (1) and it has been used in electronic communications ever since.  However, as 

often as it has been used successfully, poor implementations have resulted in its 

exploitation.  It has become increasingly clear that the strength of a cryptographic system 

rests not only on the mathematics of cryptography but also on the protocols and 

implementation methods used in application design. 

This work focuses on the cryptographic framework provided by the Simple Public 

Key Infrastructure (SPKI).  This highly customizable and flexible standard implements a 

robust public key infrastructure aimed at overcoming the shortcomings of current X.509-

based architectures.  Integrating SPKI into an existing application or building a new one 

must be done with diligence.  Despite its strong cryptography, SPKI is just as vulnerable 

to the shortcomings of poor protocol design as any security framework. 

This thesis demonstrates the use of strand space, the formal protocol analysis 

method developed by Thayer, et al (2).  The strand space formalism is used as a means of 

integrating SPKI into the Transport Layer Security Protocol (TLS).  The security 

properties of TLS are proven and a new protocol, to accommodate the validation of SPKI 

certificates, is designed.  These results provide the solution to gaps in previous SPKI 

secure web implementations, which assumed execution in a secure environment (27; 12).  

Furthermore, the method used here encourages up front consideration to security protocol 
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design by incorporating analysis into the development process.  As pointed out by Arkin, 

Stender and McGraw in their article on software penetration testing (3:84-87), too often 

security matters are taken into consideration late in the design process.  However, if care 

is taken when developing a protocol, strand space proofs can be direct implications from 

the design. 

Chapter 2 identifies the context of cryptography this project focuses on, the 

motivation for SPKI development and the basic foundation of the strand space formalism.  

Chapter 3 identifies how strand space was tailored to accommodate SPKI analysis and 

how it is intended to prove properties about multiple protocols operating in the same 

environment.  Chapter 4 provides theorems and their proofs based on TLS security 

properties and the execution of sub-protocols within the context of TLS.  Additionally, 

Chapter 4 contains the design of the new Certificate Validation protocol.  The final 

chapter provides a summary of the analysis, future work and conclusions. 
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II. Public Key Cryptography and Protocol Analysis 
2.1 Security & Cryptography 

The National Research Council (NRC) reveals in (4: Part I) just how critical 

security in electronic communication is to individuals, companies and the government as 

a whole.  The essence of this security is to prevent the interception, disruption and 

alteration of a communication between two or more principals. A modern day solution to 

these problems is Public Key Cryptography (PKC).  Developed in the seminal paper by 

Whitefield Diffie and Martin Hellman (1), PKC offers solutions for secrecy, 

authentication and non-repudiation, among other desired security goals of the NRC 

proposal. 

As PKC has developed, it has become common practice to use the Alice-Bob 

scenario as meaningful, albeit informal means of discussing protocol interactions and the 

security desires of principals executing a protocol.  The nomenclature is introduced here 

as it will be used throughout the analysis and is found throughout cryptography literature.  

The scenario posits two principals, Alice and Bob, denoted in short hand as A and B.  

Alice wishes to communicate some message to Bob.  Depending on the sensitivity of the 

information, Alice may want to authenticate Bob (or vice versa), ensure secrecy of the 

communication or have Bob prove to her that he is authorized to receive the message. 

The goal of a security protocol is generally to provide some combination of 

secrecy, authentication or authorization.  To begin, secrecy is the most basic of security 

properties.  A secret communication is intended to be impossible for a third principal, 
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referred to as a penetrator, to decipher.  Consequently a protocol that is secret is assumed 

to be impervious to eavesdropping. 

Authentication, on the other hand, provides Alice with some degree of certainty 

that she is in fact speaking with Bob.  A ‘man in the middle’ attack such as the one 

discussed in (5:8-10), would allow a penetrator to trick Alice into thinking she is talking 

with Bob when in fact she is communicating with the penetrator.  A message that can be 

guaranteed through some cryptographic means to come from a particular party is said to 

be authentic.  A stronger version of authentication is non-repudiation.  A non-reputable 

message is provably sent and received from the appropriate principals. 

Beyond authentication and secrecy, is authorization.  Perhaps Bob authenticates 

Alice, and they communicate securely, however Bob wants to know weather or not Alice 

should be allowed to know what he is about to tell her.  If he can determine Alice has 

permission to receive the information, she is said to be authorized. 

Public Key Cryptography offers a flexible solution to authentication and secrecy.  

Each principal obtains a key-pair consisting of a public and a private key.  Although the 

keys are different, they exhibit mathematical properties such that a message encrypted 

with one can only be decrypted by the other.  The mathematics driving this functionality 

is rooted in number theory and expressed thoroughly in (6:175-178, 275-280). 

In PKC, each principal keeps one key secret and publishes the other to be publicly 

available to other principals.  In a public key environment, if Alice wishes to 

communicate to Bob secretly, she encrypts her message with Bob’s public key.  If Bob’s 

private key is uncompromised, he is the only one that can decrypt and read Alice’s 

message. 
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PKC also provides the ability to sign messages.  Signing is the converse of an 

encryption.  A principal signs a message by using its private key to encrypt it.  Due to the 

property of the PKC key pair, everyone with access to the public key can then decipher 

and read the message.  However, if Alice signs a message with an uncompromised key 

and supplies it to Bob, then Bob can be positive that Alice is the only one that could have 

created that message.  Of course in this situation the communication, although 

authentically from Alice, provides no secrecy, as all principals that can hear the message 

can use Alice’s public key to decrypt it.  To provide secrecy to this interaction, the signed 

message would need to be encrypted with a private or secret key. 

Signatures enable the use of certificates.  A certificate is a message signed by a 

principal and is a guarantee from that principal.  Often times trusted principals are an 

authority of some type.  For example a name authority provides certificates that assert 

guarantees of a principal’s identity.  A certificate issued by a certificate authority (CA) is 

assumed to be true based on the trust of that CA.  A certificate can be applied to 

ownership of a resource, an identity or some other type of electronic relationship.  For 

example, take a scenario such that both Alice and Bob trust a third principal, Cyril.  In 

this instance, Cyril provides certificates to Alice and Bob.  Alice’s certificate contains her 

public key and the same is true for Bob’s certificate.  When Alice sends a message signed 

with her private key, Bob can decrypts it with her public key provided by Cyril’s 

certificate.  If Bob needs additional proof, he can ask Cyril to verify the authenticity of 

the certificate used by Alice.  In either case, Bob now knows or assumes that Alice is not 

only who she says she is, but also she is who the CA, Cyril, claims her to be.  This 
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scenario is simplistic, but it illustrates that a certificate provides a guarantee based on the 

level of trust for the CA. 

2.2 Public Key Infrastructure 

A Public Key Infrastructure (PKI) is the combination of standards, procedures and 

protocols used to issue and revoke keys or authenticate keys that are in used in public key 

cryptography (7).  The design of this infrastructure is just as important as the 

cryptography itself.  If there is a flaw in any part of the infrastructure, then the integrity 

of the system as a whole is jeopardized. 

For clarity, it is convenient to define common cryptographic terms.  A key is 

assumed to be either the public or private part of a key pair used in PKC.  In general the 

only keys PKC protocols openly use are the public keys, whereas private keys are stored 

safely and only used their owners.  Symmetric keys will be scarcely used; however, when 

they are used they are identified with qualified names such as a session keys or long-term 

keys.  These are assumed to be generated in a secure manner or stored in a way that 

prohibits their exposure. 

Certificates, issued by Certificate Authorities, provide a guarantee about their 

owner.  Most commonly certificates provide guarantees about authorization, group 

membership or identities.  Regardless of what a certificate is issued to certify, all 

certificates are a binding between a principal’s public key and the information 

representing the certificate type. 

A principal is a user of the system.  Principals are one of two types, regular or 

penetrator.  A regular principal follows the protocols and standards of the PKI and 
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operates within system parameters.  A penetrator is a malicious principal that drives to 

undermine the security provided by the PKI. 

A protocol is the functional description of principal interaction.  A protocol 

defines what information is sent, what format it is in and when to send it.  Generally, 

protocols are built with one or more security goals in mind.  Thus, the execution of a safe 

protocol will provide some combination of authentication, secrecy or authorization.  

However, a protocol that attempts too much can lead to a cumbersome implementation.  

If an infrastructure based on this is considered too burdensome to use, it is as useless as 

not having a secure infrastructure at all (8). 

2.2.1 X.509. 

X.509 is the de facto standard for Internet PKI.  X.509 establishes the framework 

for a centrally controlled directory of cryptographic keys and users.  The directory is 

managed by Certificate Authorities, which carry out the procedures for supplying and 

validating certificates.  A corresponding authority in the structure is the Naming 

Authority (NA).  The NA controls the scheme with which a CA issues certificates to a 

particular name.  Often times it is convenient for NAs and CAs to be the same entity, 

however, this can preclude independent CAs from sharing a single NA, which degrades 

the continuity of the global directory X.509 relies upon (9). 

X.509 certificates bind a public key to a name of a principal with a global 

directory of names.  This type of certificate is called a name certificate.  X.509 relies on a 

unique name for each user participating in the PKI.  This empowers the infrastructure to 

issue certificates and provide definitive guarantees as to the registered identity of 

individuals.  When a certificate is under question, all one needs to do is refer to the global 
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directory and all the necessary information is provided concerning that certificate and the 

individual it was issued to. 

In practice, X.509 has revealed a number of shortcomings.  Privacy is an 

important issue in cryptography; however, the existence of a global hierarchy inherently 

lacks privacy.  For example, a company that requires its employees to have some degree 

of anonymity may want them to utilize PKC via the X.509 hierarchy.  In doing so they 

would identify themselves as an employee of that company.  However, to protect against 

this type of information leak, the company may choose not to register a portion of its 

employees in the global directory.  Although this protects that group’s privacy, it 

diminishes the inherent strength of the directory by decreasing the number of 

participants. 

X.509 authentications rely on having on individuals registered to unique names.  

This restricts usable names and also presents a considerable challenge to issue unique 

certificates.  Due to the global scope of the directory, it is a sizeable configuration 

challenge to coordinate non-repeating names for all users. 

Currently in draft form, the X.509 standard overall is a fairly complicated and 

cumbersome standard.  As a result, it has been subject to wide interpretation.  There are 

no guarantees between different implementations that certificates will be formed in the 

same manner, be processed in the same way, or even be accepted by all applications 

using them. 

This overview is only meant to reveal some of the clear problems with the X.509 

standard and justify why others are motivated to propose new standards.  ` more thorough 
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review of X.509 and public key infrastructures is available in (10: 3-9), and the technical 

reader is directed to the standard itself (9).  

Carl Ellison, et al (8), in light of X.509 shortcomings, has proposed an alternative 

infrastructure to support public key cryptography.  They aimed at creating a PKI that is 

extensible, robust and easy to use.  This new PKI is aptly named the Simple Public Key 

infrastructure (SPKI). 

2.2.2 SPKI/SDSI. 

In short, SPKI is just as its name suggests, a simple PKI.  It was developed 

concurrently with the Simple Distributed Security Infrastructure (SDSI), a standard for 

defining certificates.  Based on the same principles, these two standards eventually 

merged to form SPKI/SDSI.  For brevity, the pair is most commonly referred to as simply 

SPKI. 

Traditionally, certificates have been a binding between a name and a key.  

However, Ellison, et al, point out in (11:7-8) that a key holder’s name is rarely of security 

interest.  Rather, it is argued, the authorizations of that person are inherently more useful.  

Thus, in addition to name certificates, SPKI uses authorization certificates.  This novel 

concept allows an authority to associate an authorization directly to a principal.  The 

certificate thus is a binding of an authorization to a key and offers an explicit and 

customizable assurance of authorization. 

Authorization certificates enable a CA to provide anonymity and privacy to the 

users of the PKI.  If the identity of the principal is not contested but rather only a user’s 

authorization to perform an action, a user’s identity can remain private.  One application 

of this is secret balloting.  If keys are bound with no identifying information and 
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distributed blindly, then participants may use them to vote without revealing their 

identity.  This is made possible by using separate certificates for identity and 

authorization.  Where traditional certificates merge identity and authorization, SPKI 

breaks these into two types of certificates, which offers the flexibility for unique 

situations such as anonymous voting or group authorizations. 

SPKI governs authorization through customizable authorization tags.  There are 

very few limitations to these tags in order for them to be easily applied in a diverse range 

of applications.  This flexibility, however, comes with a price.  The issuers of the 

certificates must have intimate knowledge of the authorization requirements of the 

system.  This problem is compounded by the distribution of certificates via delegation. 

In the SPKI framework, each principal is empowered with the ability to issue 

certificates.  In short, each principal is a certificate authority for any resource it controls.  

If a resource requires secrecy, authentication and authorization, then certificates granting 

access to that resource reflect that all three security properties must be fulfilled to validate 

access. 

Intuitively, each principal is the keeper of his or her own resources.  Therefore 

must manage them and provide certificates that will make sense when supplying access 

to those resources.  Since certificates are issued by all principals, there is no need to 

coordinate with other principals to ensure unique names.  Just like the authorization 

certificates, each principal has its own frame of reference concerning principals it will 

work with.  Each principal’s perspective is referred to as a namespace.  A namespace 

represents the domain of that principal.  A principal that controls a university will have a 

large namespace, while a student within that university may have a very limited one. 
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The management of a large namespace is simplified by the ability to delegate 

authority through SPKI certificates.  Using the university example again, the principal in 

charge of a university can delegate university authority to its various departments, and in 

turn the departments can delegate it down to their own divisions.  Ultimately, a student in 

the delegation chain may be issued a certificate that identifies him or her as a student of 

the university in the computer science department in the graduate school. 

An authorization certificate has a delegation bit to manage the user of delegation.  

If the delegation bit is enabled, then the principal issued that authorization can delegate it 

to principals in its own namespace.  In the university example, the university initially 

supplies an authorization with the delegation bit enabled.  In turn each level of the 

hierarchy re-issues the authorization with the enabled bit.  Finally, the student receives a 

certificate with a disabled delegation bit.  Thus, although the student is authorized to 

access student resources, that student does not have the ability to delegate that 

authorization to anyone else.  In this way, a local hierarchy is built with the delegation of 

authority beginning at the university level and ultimately ending with a student who no 

longer has the ability to delegate. 

Once delegation has taken place and meaningful keys are distributed, there still 

remains the challenge of proving a certificate was issued from the proper chain of 

authority.  This process is called certificate chain discovery.  In essence it follows a 

transitive property.  For example, imagine three principals A, B, and C.  A is the owner of 

a resource, and grants authority to B to delegate access to that resource.  B delegates 

authorization to C to use the resource.  In turn, C asks to use the resource, and is 

challenged by A.  In response to the challenge, C provides a certificate chain that shows 
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the delegation from A B C.  A reduces the certificate chain to a simple form A C, 

and is convinced that C should be authorized to access the resource. 

Due to the potential problem of determining the appropriate chain to supply given 

a challenge, a good deal of research has been conducted on this topic (12;13;14) and has 

resulted in a tractable and efficient algorithm for certificate chain discovery. 

2.3 Protocol Analysis 

Modern protocol proof methods are generally founded on two seminal papers 

with regards to abstraction and focus.  The Dolev-Yao model, proposed originally in 

1981 (15), abstracts protocol messages into a term algebra.  In applied cryptography 

messages are bit-strings, however, abstracting them into terms allows the focus of the 

analysis to be on the protocol itself.  These terms are then applied to a first order 

equational logic, which allows them to be manipulated as they would in a cryptographic 

protocol. 

Because attacks on cryptographic systems generally avoid challenging the 

mathematics cryptography is built upon (6), but rather exploit protocol design, it is 

possible for poor protocols to undermine the very security they intend to provide.  (16) 

provides numerous examples of security protocols that are now defunct or have 

undergone numerous fixes to prevent simple intrusions.  Many protocol attacks are a 

result of incomplete, misguided or misinterpreted proofs of protocol correctness. 

Along this vein, Woo and Lam argue that the problem with protocol analysis is 

that it fails to separate correctness and verification.  Instead, it includes too much in a 
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single analysis, without considering the importance of individual parts.  This focus, they 

argue, only contributes to complicated proofs that are often misunderstood. 

Consequently, Woo and Lam break down analysis into two elements, secrecy and 

correspondence.  Secrecy is the notion of maintaining data integrity in the presence of a 

penetrator.  Integrity includes a secret message remaining secret and unaltered from when 

it was sent.  Correspondence, on the other hand, is what has been referred to thus far as 

authentication.  By dividing these two notions it is possible to obtain flexible analysis for 

a diverse range of protocols. 

Based upon Dolev-Yao and supported by the Woo-Lam notion of separation of 

secrecy and authentication, Thayer, et al, developed the strand space formalism for 

protocol analysis (2). 

2.3.1 Strand Space. 

The strand space formalism establishes an inductive base used to prove theorems 

about protocol correctness.  This section provides the basic definitions of strand space, 

although a more thorough description is available in the defining papers (2; 17; 18; 21; 

28; 29). 

The strand space formalism imposes a Dolev-Yao style set theory on protocol 

messages.  All data used and communicated by a protocol is a member in the set A.  This 

set is then specialized into disjoint sets for more accurate models of data.  In particular, A 

contains the subsets of keys K and texts T.  The language of strand space is then built 

freely from these sets using operators appropriate to the protocol being analyzed (2). 

The encryption operator takes any term g from A, a key k from K, and outputs an 

encryption {g}k that is in A, but not in either K or T.  The join operator simply takes two 
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terms, g and h, concatenates them and results in a new term in A.  These sets allow a 

proof to reason about which sets of information are available to each principal and 

penetrator of a protocol.  As protocols become more specialized, these operators can be 

expanded, such as in (17). 

Furthermore, a sub-term relationship  is defined over terms.  The result of the 

join operator is a term which contains the two sub-terms used to create it.  On the other 

hand, the sub-term of an encryption is only the payload of the cipher text and not the key 

used to create it.  Formally, the sub-term relationship  is the smallest inductive relation 

such that it has the properties of Table 1 (23:11-23). 

Table 1 Sub-term relationships of terms 
Relationship Elucidation 

t  t t is a sub-term of itself 

t  {g}k if t  g t is a sub-term of an encryption only if it is 
a sub-term of the payload of that 
encryption. 

t  gh if t  g OR t  h t is a sub-term of a concatenation if it is a 
sub-term of either of the terms composing 
the concatenation. 

 

The strand space formalism models a protocol into a set of nodes and edges.  Each 

principal of a protocol is modeled by a subset of these nodes and edges forming a graph 

structure called a strand.  A strand consists of a series of temporally ordered nodes 

connected by intra-strand edges  representing a series of actions.  These actions will 

always be appropriate for the type of strand they are on and can include the deciphering 

of an encryption, the concatenation of terms or the separation of terms.  Each node of a 

strand is associated exclusively with the reception or the transmission of a message from 
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that node’s strand to or from another strand.  Inter-strand communication is represented 

by inter-strand edges .  An inter-strand edge always includes a term from the set A 

representing information communicated to or from that node. 

A principal is represented by one or more strands.  Several strands linked together 

constitute a strand space representing all possible communications between connected 

strands.  Subsets of this graph, called bundles, are more manageable and are used to 

accurately and minimally represent protocol principal interactions.  Appendix A provides 

a simple example of a protocol and its strand space representation. 

These and other formal definitions constitute the foundation of the strand space 

formalism (2: 6-15): 

 

A strand space Σ is composed of the following: 

nodes – a tuple s,i , where s is a strand, Σ∈s  and i is an integer 1 ≤ i ≤ length of 

the strand.  The set of nodes is denoted .  The node s,i  belongs to the strand s 

and every node belongs to exactly one strand. 

 

terms – if n = s,i  ∈   then index(n) = I and strand(n) = s.  Then term(n) is the 

ith signed term in the trace of s.  That is the ith term communicated between this 

strand and another. 

 

inter-strand edges – an edge n1→ n2 if and only if term(n1) = +t and term(n2) = -t 

for some t ∈  A.  The sign of a term indicates weather it has been sent (positive) or 
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received (negative).  An inter-strand edge captures a causal relationship between 

strands. 

 

intra-strand edges – When n1 = s,i  and n2 = s,i+1  and n1, n2 ∈ , there is 

and edge n1  n2.  This type of edge expresses that n1 is an immediate causal 

predecessor of n2 on the strand s.  The set n′ is used to denote all predecessors of 

a node on a single strand. 

 

occurrences – a term t is said to occur on a node n if and only if t  term(n). 

 

entry points – the node  is an entry point for a set of terms I if and only if 

term(n) = +t for some t ∈I, and whenever term(n′)  I. 

 

originations – A term t originates on  if and only if n is an entry point for 

the set I ={t′: t  t′}. 

 

unique originations – a term t is uniquely originating if and only if t originates on 

a unique . 

 

bundles – a bundle  consists of a finite subset of nodes, inter-strand edges and 

intra-strand edges of a given strand space.  If the node n2 ∈  and term(n2) is 

negative then there is a unique n1 ∈   such that n1→n2.  Furthermore, if n1 n2 is 
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in Σ and n2∈  then n1 n2 is in .  Finally, this subset of Σ must be acyclic to be 

considered a bundle. 

 

It is worthwhile noting that the properties of a bundle allow a partial order relation 

to be defined.  Thus,  is the reflexive, anti-symmetric, transitive closure of the edges of 

a bundle.  This ordering ensures that every non-empty subset of nodes in a bundle has a 

minimal member with respect to .  Furthermore any term, t, of the minimal node of a 

bundle must have a positive sign, and is an originating occurrence of t. 

Strand space was developed to prove properties not only about protocols in an 

isolated environment, but also can represent multi-protocols in a single strand space.  A 

strand space representing a primary protocol and any number of sub-protocols is called a 

mixed strand space.  A protocol used in the presence of sub-protocols is called a base 

protocol.  A base protocol can have any number of sub-protocols that may influence the 

security properties of the all the protocols it interacts with. 

In contrast to this hierarchy of sub-protocols, is the analysis hierarchy.  The 

subject of an analysis is called the primary protocol.  Any other protocol operating in the 

same strand space as a primary protocol is called a secondary protocol.  The primary 

protocol is used to produce the foundation of definitions, properties and rules with which 

to compare secondary protocols.  A base protocol may intuitively seem like the best 

choice for a primary protocol, however, this does not have to be the case. 

More formally, in a mixed strand space Σ, the set Σ1 is the set of all primary 

regular strands.  The remaining regular strands Σ2 are secondary strands and constitute 

the set difference of all primary strands and the set of regular strands.  Thus, the mixed 
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strand space Σ is composed of the disjoint sets of primary strands Σ1, secondary strands 

Σ2 and penetrator strands PΣ. 

The strand space model is further extended in (17) to provide a means for 

analyzing the Diffie-Hellman (DH) protocol.  A protocol is said to be conservative with 

regard to DH if a generated key arises on a regular node only when the values used to 

create it arise on regular nodes.  Furthermore, a protocol is said to be silent with respect 

to DH if no DH generated key originates on a regular node.  It is also convenient to 

conclude that a bundle over a protocol that is silent and conservative with respect to DH, 

and only has DH constructors that arise on regular strands will never originate a DH 

generated key. 

The strand space formalism allows the application of induction to prove the 

properties of bundles representing protocol interactions.  Various proofs that use this 

formalism are published in (2).  As strand space has developed it has expanded to include 

a proof method to more easily apply the formalism to protocol analysis: the 

authentication test. 

2.3.1.1 Authentication Tests 

The authentication test method for strand space analysis was established to 

expedite secrecy and authentication proofs (18).  Authentication tests do this by building 

on strand space theory and an assumption referred to as the normal form lemma.  The 

normal form lemma simply limits the actions of the penetrator to non-trivial 

manipulations of messages.  Among other things this means that if a term is encrypted 

with a key the penetrator does not have, then it cannot be deciphered.  It has been proven 

that enforcing this restriction on the penetrator only forces an ordering of actions, but 
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does not limit what can be accomplished by the penetrator.  The useful consequence of 

this is that if a term is sent encrypted with a safe key then it can only be altered by a 

regular participant.  Thus, if that term is returned altered, it can be assumed that a regular 

participant received it, altered it, and sent it back.  Such a term is what Thayer, et al, 

defines as a test component and the actions taken on it as an authentication test.  

Authentication tests rely on two additional assumptions, proven elsewhere (18), 

regarding keys used in cryptography.  First, messages sent with a key known by the 

penetrator can be manipulated by the penetrator.  In addition, keys that are sent encrypted 

with a key known by the penetrator then become a key known by the penetrator.  These 

are the only means the penetrator has of obtaining keys.  Conversely, a key is considered 

safe if it is either never uttered by a principal in the protocol or is only uttered as a sub-

term of a term encrypted with a key that is not known by the penetrator. 

In order to reason about messages sent between strands, it is necessary to deal 

with the atomic pieces of terms.  These are defined as components.  A term t0 is a 

component of a term t if it is a sub-term of t, if it is not a concatenated term, and no 

concatenated term in t is equal to t0  Less formally, components are either an atomic value 

or they are an encryption. 

A component is considered new at a node in a strand if it is a component of that 

node, but it is not a component of any previous node on that strand.  The fact that it may 

have been a sub-term of a larger component previously in the strand makes no difference.  

Since the component was not a visible component of previous terms, it is new at its first 

non-sub-term appearance.  Thus, it is an intuitive assumption that if a component occurs 
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new on a regular node, then the strand has either generated, encrypted or decrypted 

information to supply the new component. 

The authentication tests themselves revolve around the transformation of 

components.  An edge n1  n2 is a transformed edge for a term t, if n1 is positive and n2 

is negative, t is a sub-term of n1 and there is a new component t2 of n2 which contains t as 

a sub-term.  On the other hand an edge is a transforming edge if n1 is negative and n2 is 

positive, t is a sub-term of n1 and there is a new component of n2 which contains t as a 

sub-term.  Figure 1 shows visually a simple example of both types of edges. 

 

 

Figure 1 Strand space edges 
 

Components of interest in proofs are known as test components.  A component c, 

is a test component for a term t at a node if t is a sub-term of c and c is a component of 

that node, and the term c is not a proper sub-term of a component of any other node in the 

strand space.  Combining this with the previous edge definitions, an edge between two 

nodes (n1  n2) is a test for term t if t uniquely originates at node n1 and the edge 

between n1 and n2 is a transformed edge for t. 

A test component is used as a challenge to another participant in a protocol.  One 

way to offer this challenge is to take a uniquely originating value, such as a nonce, 
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encrypt it and send it to another principal.  At this point, the challenge is to see if the 

principal is able to decipher it, this is called an outgoing test.  If instead the value is sent 

in the clear and is expected to be returned in an encrypted form, the interaction is an 

incoming test.  Depending on the properties of the messages being sent, these two 

authentication tests can offer a variety of guarantees to one or both of the parties. 

Authentication tests provide guarantees about the existence of regular strands 

receiving sent messages.  If a bundle includes an outgoing test for a component then there 

exists a corresponding set of nodes from another regular strand that constitute a 

transforming edge for that component.  Additionally, if a component c only occurs as a 

sub-term of an encrypted term t of the regular strand including the transforming edge, and 

t is not a proper sub-term of any regular component, and the key used to encrypt it is not 

known by the penetrator, then there must be a negative regular node with t as a 

component. 

The corresponding assertions are also valid for incoming tests.  Given a bundle 

and a term t that is an incoming test for a within that bundle, then there exist regular 

nodes that t is a component of and there is an edge corresponding to those nodes that is a 

transforming edge for a. 

One final definition is required for a third authentication test, the unsolicited test.  

A negative node n is considered an unsolicited test for an encrypted term t, if t is a test 

component for any a in n and the encrypted key is not known by the penetrator.  Thus, 

given a bundle with a node n which receives an unsolicited test for an encrypted term t, 

then there must exist a positive regular node from another strand such that t is a 

component of that node. 

21 



 

These authentication tests are combined with the properties of the terms being 

sent in a protocol to prove authentication and secrecy guarantees.  Detailed examples are 

available in (18). 

2.3.1.2 Penetrator Strands 

Regular strands are those that represent a legitimate and accurate run of a 

protocol.  In a two-principal protocol, regular strands are generally called the initiator and 

responder strands.  Protocols that include a trusted server will also include a server 

strand.  This naming method of strands is not formal; however, it is employed to make 

reasoning about protocols more easily understood.  The other type of strand useful to 

protocol analysis is the penetrator strand. 

In strand space the penetrator is represented by eight types of penetrator strands.  

These strand types are separate in order to differentiate what a penetrator can and cannot 

do in an attempt to infiltrate a protocol.  Roughly speaking, the eight strands capture the 

penetrator’s ability to block messages, generate messages, join messages from parts of 

other messages, and apply encryption or decryption.  These effectively model what 

typical protocol attacks consist of and thus reveal these weaknesses during protocol 

analysis.  The eight strands are represented by a single letter, M, F, T, C, S, K, E, or D.  

Their definitions follow. 

 

M : Sending a message. 

F : Receiving a message. 

T :  Receiving a message and sending it out to two other strands. 
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C : Concatenation.  Receiving two different terms, and sending the concatenation 

of them to another strand. 

S : Separation.  Receiving a concatenation of terms, separating them, and sending 

each out individually. 

K : Key.  Sending a key as a term, all keys sent this way are assumed already 

known to the penetrator. 

E : Encryption.  Receive a key, and a term, and send out the term encrypted with 

the key. 

D : Decryption.  Receive in inverse key, and an encrypted term.  Decrypt the 

term, and send out the unencrypted term. 

 

Because the model of the penetrator is not protocol specific, it can be applied to 

any protocol under analysis.  More importantly, it can help determine what information 

the penetrator can learn or how the penetrator can trick other strands into believing they 

are talking with someone else. 

An infiltrated strand space is the union of regular and penetrator strands.  Bundles 

carved out of infiltrated strand spaces reveal the weakness or conversely the strengths of 

a protocol under attack.  Such an analysis is demonstrated in (2; 17; 18; 21; 28; 29). 

In summary, a protocol is a sequence of interactions between principals and 

potential penetrators of the protocol.  In strand space, each participant (regular and 

penetrator) is represented by at least one strand.  A strand is built representing each 

principal’s actions; messages sent are represented by an edge between two nodes on 

different strands.  Each node has a causal relation to other nodes in the strand space, 
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either within its own strand or to a node of another strand.  A bundle is a sub graph of the 

strand space.  Properties of bundles accommodate inductive proofs due to their partial 

ordering.  A bundle representing a protocol may include only principal strands or 

principal strands entwined with penetrator strands.  When bundles exhibit very specific 

properties, they allow assertions to be made about other strands in the protocol.  These 

assertions are made through the application of authentication tests and prove the secrecy 

or authentication of the messages and principals, respectively, involved in the interaction.  

It is also important to note that in strand space assertions made about a protocol proven 

with authentication tests will be correct regardless of the presence of penetrator strands 

within its bundle.  
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III. Analysis Methodology 
 

The SPKI standard provides a cryptographic framework to build secure 

applications.  The framework supplies certificates that are used for authentication, 

secrecy and authorization. However, developed with the goal of flexibility in mind, the 

SPKI standard has minimal protocol specifications.  Due to the sensitivity of information 

used in cryptographic applications, it is important for them to rely on formal proofs of the 

security properties they purport to provide.  Consequently, it is necessary to supply these 

proofs before a secure application can be relied upon. 

Furthermore, protocol design is a delicate matter.  Overlooking minor details in a 

protocol can result in exposing the cryptographic system to catastrophic intrusions.  A 

common practice is to imbed a new protocol into one that has already been proven 

correct.  However, this apparently innocuous integration can completely undermine the 

security of the existing protocol.  An example of this is the Neumann-Stubblebine 

protocol.  The Neumann-Stubblebine protocol provides proper authentication on its own; 

however, upon execution of its session resume sub-protocol, the authentication of the 

original is undermined (17). 

Since SPKI is an enabling technology, it will generally never be implemented as a 

stand-alone application, but rather, will be integrated into another application.  That 

environment will utilize its own protocols and SPKI will be adjusted to its needs.  This 

integration must be proven to supply the necessary security properties before it can be 

trusted.  To prove that the implementing application and SPKI harmonize their security 
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goals, it is necessary to prove the base protocol in an isolated environment in addition to 

in an environment running sub-protocols such as SPKI. 

This chapter identifies which components of the strand space formalism can be 

assembled to provide a proof foundation for SPKI applications.  Using this base and the 

strand space method of mixing protocol in a single analysis, the method is well-suited for 

base and sub-protocol execution in the same strand space.  Furthermore, the methodology 

guides protocol design to ensure the security properties of the primary protocol are 

retained. 

3.1 The PKI Strand Space 

Due to the unique nature of cryptographic protocols, the strand space formalism 

must be adjusted to accommodate any unique operations of a protocol before it can be 

applied in analysis.  This is done by adding additional operators to the term building logic 

and by adding new types of penetrator strands representing the actions of the added 

operators. 

 The strand space here is constructed for an environment conducive to DOD 

applications which would benefit from the security measures supplied by a public key 

infrastructure.  In particular, it is a hybrid of the strand space model used in stand-alone 

Diffie-Hellman analysis (17) and in a mixed-protocol environment (28). 

To build this strand space, the term algebra presented in Chapter 2 must be 

expanded to include PKI operations used in the Diffie-Hellman (DH) protocol (17).  This 

is accomplished by adding the disjoint subset D to the set of all terms A.  D represents 

DH exchange values.  These are the values used to coordinate the shared secret key in a 
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DH exchange and the generated key from the DH algorithm.  In addition, let H represent 

the range of a one way hash function and assume that H is another disjoint subset of A. 

The operators available on all terms must also be expanded (17).  Operators for 

hashing, signing and creating DH keys are included.  All operators of the DH strand 

space are listed in Table 2. 

Table 2 Strand space operators 
Operator Meaning Notation 

hash : A → H Injective hash function hash(t) 

encr : K × A → A  Encryption {t}k 

sign : K × A → A  Signature [t]k 

join : A × A → A Concatenation gh 

DH  : D × D → K Diffie-Hellman Calculation f(ds,dc) → k′ 

 

In addition to the term algebra, the PKI penetrator is given functionality as 

appropriate to the PKI strand space.  The new model of the penetrator defined in 

following section. 

3.1.1 PKI Penetrator. 

 The PKI penetrator model is the standard strand space penetrator, with the 

addition of public key operations in terms of the F, σ, X and H strands.  Table 3 provides 

the type of strands used to model penetrator actions. 
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Table 3 PKI penetrator strand types and signatures 

 

Strand designator and type Strand signature 
M – simple text message < +t > 
C – concatenation of terms <-g, -h, +gh> 
S – separation of terms < -gh, +g, +h > 
k – key tell < +k > 
E – encryption of terms < -k, -h, +{h}k > 
D – decryption of terms < -k, -{h}k, +h > 
σ – signature of terms < -k, -h, + [h]k > 
X – extraction of signed terms < -[h]k, +h > 
F – create fresh Diffie-Hellman value < +ds > 
H – compute injective one way hash < -g, +hash(g) >   

This model works on the assumption that the encryption being used by the regular 

strands is strong.  The strong encryption assumption is that it is impossible for the 

penetrator to guess a key used in an encryption or signature unless he already has that 

key.  Similarly, hashing functions are assumed to be irreversible and unpredictable, such 

as the MD5 (19) and SHA-1 (20). 

3.3 Protocol Independence though Disjoint Encryption 

In order to mix two or more protocols successfully, it must be proven that each 

protocol is safe in isolation and that the execution of all protocols together is also safe.  

One way to accomplish the latter is to prove that the protocols to be mixed are 

independent of one another.  If so, then it can be concluded without further proofs that all 

security properties a protocol exhibits in isolation are also valid in the mixed 

environment. 
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Protocol independence requires further extensions to the strand space formalism.  

These were introduced in (28) as the concept of respect, but have been refined (21) to 

form a more thorough model called independence. 

Two crucial definitions are those of privacy and fullness.  An atomic value 

is said to be private in Σ if it never originates in the set of secondary strands ΣKTa U∈ 2 

or the set of penetrator strands ΣP.  If it is not private, then it is considered public.  

Furthermore, a concatenated value gh is public if g and h are public and an encrypted 

value {h}k is public if h and k are.  Additionally, a strand space Σ is said to be full if 

every atomic value  that originates on ΣKTa U∈ 2 also originates on some M-strand or 

K-strand in Σ.  Intuitively, this defines a strand space with a penetrator that is fully 

capable of listening to messages and operating with them according to his defined 

actions.  Thus, a full strand space is one with a penetrator strand entwined with regular 

strands to accommodate the full extent of the penetrator’s abilities. 

Disjoint Outbound Encryption – A strand space Σ has DOE if and only if given a 

positive node n1 ∈  Σ1, a negative node n2 ∈  Σ2 and a private term a {h}k such that 

{h}k  term(n1) and {h}k  term(n2), then there is no positive node  such that 

n

xn

2
+⇒ xn  and a occurs in a new component of  (21). xn

Disjoint Inbound Encryption – A strand space Σ has DIE if for all negative n1∈Σ1, 

positive n2∈Σ2 and for all  {h}k, if {h}k  term(n1), then {h}k  t0 for any new 

component t0 of n2 (21).

Disjoint Encryption – A strand space Σ has disjoint encryption if it has both 

disjoint inbound and disjoint outbound encryption (21). 
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If Σ is full and has disjoint encryption, then Σ1 is independent of the set Σ2.  A 

simple case of independence occurs when the set of keys used to encrypt terms in Σ1 are 

disjoint from those used in Σ2.  Intuitively, if no similar keys are used by both protocols, 

then independence is trivially true as the conditions are never challenged. 
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IV. An Analysis of the TLS Protocol 

4.1 Transport Layer Security Protocol 

Arguably one of the most widely used protocols in secure Internet 

communications is the Transport Layer Security protocol (TLS) (22: 1-2).  TLS is a 

layered protocol designed to provide secret communication between two principals while 

offering the ability to authenticate each participant (23). 

The two layers of the TLS protocol are the TLS Handshake protocol and the TLS 

Record protocol.  The Handshake protocol is used to allow the principals to agree on 

what protocols to use for symmetric key generation.  The Record protocol then uses the 

newly generated symmetric key to exchange information securely.  RFC 2246 specifies 

the Change Cipher Spec and Alert protocols, in addition to the Handshake and Record 

protocols; however, for this work the functionality of these are assumed to be subsumed 

by the Handshake protocol. 

The TLS Handshake protocol is a simple protocol designed to coordinate the 

usage of other protocols.  During the Handshake protocol, principals negotiate not only 

which key exchange protocol to use, but also the parameters to use while running these 

sub-protocols.  The two sub-protocols used for key exchange are the Diffie-Hellman 

public key agreement protocol and the RSA key exchange protocol (24).  Once agreed 

upon, the key exchange protocol is executed as a sub-protocol.  After a session key is 

generated from a successful key agreement protocol, the Handshake protocol concludes 

and TLS protocol will continue by executing  the Record protocol or abort as is 

appropriate. 
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To apply strand space, the TLS protocol was abstracted into Dolev-Yao style 

terms (15).  The abstraction allows the strand space proofs to reason how the protocol 

operates rather than obfuscate the analysis with implementation details. 

The model used in this analysis was designed to focus on the interaction of 

cryptographic terms in the TLS protocol.  Thus, the details of clear text messages 

identified in the TLS standard (23) are abstracted to a simple terms as they have limited 

impact on the underlying cryptography.  A similar abstraction was made in (17). 

The TLS protocol itself is abstracted into one of two base protocols, either the 

SAP, Server Authentication Protocol (Figure 2) or the SCAP, Server & Client 

Authentication Protocol (Figure 3).  Sub-protocols executed within the context of these 

base protocols are the Resume Session (Figure 4) and the Certificate Chain Validation 

protocols. 

4.1.1 TLS: Server Authentication Protocol. 

The TLS Server Authentication protocol is depicted in Figure 2.  The client 

initiates the exchange by sending a message with two components in order to negotiate 

which protocol to use for the key exchange.  Tc is a list of client-supported protocols and 

parameters.  If the client desires to resume an old session, it also sends the preferred 

session ID, Sc.  However, most frequently the Sc message is a null message, indicating a 

new session needs to be established.  This first exchange is a minimized representation of 

the ClientHello message in the TLS standard (23).  Tc is assumed to include DH. 

 

32 



 

 

Figure 2 TLS Server Authentication 
 

The server either recognizes the old session ID and executes the Resume Session 

protocol, or it continues on.  If the server continues with the Server Authentication 

protocol, the server responds with Ts to specify the protocols and parameters to be used 

for the remainder of the exchange.  The server also sends the session ID, Ss, to be used as 

a reference for this connection.  Ts is assumed to specify DH.

 Additionally, the server replies with a certificate chain, ks[], of SPKI certificates 

detailing its identity.  Each link of the chain is a certificate that binds the server’s public 

key to a name or authorization.  The chain in its entirety, ks[], is a logical implication of 

certificates proving the server’s identity from a client-verifiable source. 

Furthermore, the fresh DH values are signed with the server’s private key and 

presented to the client to negotiate a shared secret.  These exchanges represent the 

ServerHello, Certificate, ServerKeyExchange and ServerHelloDone messages defined in 

the TLS standard. 
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The third message is the unsigned DH response, dc, and a hashed message digest, 

End[client].  The digest is signed with the newly calculated shared secret k′.  This 

exchange represents the ClientKeyExchange, ChangeCipherSpec, and ClientFinished 

messages. 

The final exchange returns a hashed digest, End[server], that allows the client to 

verify the details of the exchange were done according to the standard and that there have 

been no alterations. 

The strand space traces of the principals in this protocol, Client and Server, are 

provided in Table 4.  They are identical with the exception that their signs are reversed.   

Table 4 Server Authentication Protocol Principals 

Principal Signature Strand Trace 

Client[Tc, Sc, Ts, Ss, ks[], ds, dc] + Tc, Sc, -TsSsks[][ds]ks, +dc{End[]}k′, -{End[]}k′  

Server[Tc, Sc, Ts, Ss, ks[], ds, dc] − Tc, Sc, +TsSsks[][ds]ks, -dc{End[]}k′, +{End[]}k′  

 

4.1.2 TLS: Server & Client Authentication Protocol. 

The Server & Client Authentication version, shown in Figure 3, is only subtly 

different from the previous protocol.  The Server adds an additional request, Tcert, 

specifying what type of certificate must be produced by the client to complete the 

exchange.  Furthermore, the client returns a certificate chain of its own kc[] and signs its 

half of the DH value with a private key.  The exchange then ends just as the Server 

Authentication protocol does. 
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Figure 3 TLS Server & Client Authentication 
 

The strand traces for regular principals for the Server & Client Authentication 

protocol are provided in Table 5. 

Table 5 Server and Client Authentication Protocol Principals 

Principal Signature Strand Trace 

Client[Tc, Sc, Ts, Ss ks[], ds, kc[], dc] + TcSc, -TsTcertSsks[][ds]ks, 
+kc[][dc]kc{End[]}k′, -{End[]}k′  

Server[Tc, Sc, Ts, Ss ks[], kc[], ds, dc] −  TcSc, -TsTcertSsks[][ds]ks, 
-kc[][dc]kc{End[]}k′, +{End[]}k′  

 

4.1.3 TLS: Resume Session Protocol. 

The final TLS protocol being analyzed is the Resume Session protocol.  Unlike 

the other two, this protocol can only be executed following a successful execution of 

either the Server Authentication or Server & Client Authentication protocol.  Instead of 

establishing a new session ID, this exchange restarts a session based on a previously 
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negotiated secret key.  The ability for the server to decline a resume request and the hash 

message digest End[] are the controls of this protocol to prevent abuse and limit 

feasibility of attacks.  The strand space trace is depicted in Figure 4 and principal traces 

in Table 6. 

Table 6 Resume Session Protocol Principals 

Principal Signature Strand Trace 

Client[Tc, Sc, Ts, Ss] + Tc, Sc, -TsSs{End[]}k′, +{End[]}k′  

Server[Tc, Sc, Ts, Ss] −  Tc, Sc, +TsSs{End[]}k′, -{End[]}k′  

 

 

Figure 4 Resume Session 
 

The End[] function warrants further explanation.  First, as mentioned above, it is a 

symbolic representation of the final messages sent between participants in the TLS 

protocol.  The actual composition of these messages varies depending on the negotiated 

parameters; however, the properties remain the same.  Each is constructed using a mix of 

pseudo-random functions, MD5, and SHA hashes.  It is assumed that these digest values 

uniquely originate at their source node.  A message produced by a server is constructed 

with a label indicating as such, whereas a message created by a client is also 
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appropriately labeled before the hashing takes place to prevent the confusion, replay 

attack or replacement of one instance with another. 

The uniqueness of each instance of the End[] function can be illustrated with the 

composition of its inputs.  An example of a set of inputs would include the generated 

session key k′, a specification of what role the message is being sent under (client or 

server), then an ordered array of previously sent messages history[] and an array of 

previously sent secrets secrets[].  The result of this function is a uniquely originating 

value Nx that is unpredictable to a penetrator but reproducible by a principal with all the 

correct information.  The input and outputs of the End[] function are illustrated in Table 7. 

Table 7 End[] Function Inputs for Server & Client Authentication Protocol 
Message  Input History[]  Secrets[] Output 
3 k′, client,  

history[], 
secrets[] 

TsSs,  
TsSsTcert ks[][ds] ks 
 

k′ N0 

4 k′, server, 
history[], 
secrets[] 

TsSs,  
TsSsTcert ks[][ds]ks, 
kc[][dc] kc{ N0}k′ 

k′, 
N0 

N1 

x k′, <role> 
history[] 
secrets 

TsSs,  
TsSsTcert ks[][ds]ks, 
kc[][dc] kc{ N0}k′ … 
…{Nx-1}k′ 

k′, 
N0, … 

… Nx-1 

Nx 

 

The aim of the End function is to provide a unique, secure, non-reversible digest.  

A received digest can then be compared to a self-generated one in order to confirm all the 

messages and secrets shared between two principals.  Although there have been recent 

concerns with the MD5 hash (25; 26), it is still considered to be a safe means of creating 

digests. 
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4.2 SPKI Integration into TLS 

During the analysis, reference to TLS will imply a reference to the abstract 

Handshake protocol as described below.  The SAP and SCAP are assumed to be the base 

protocols and will be executed using the Diffie-Hellman key agreement algorithm using 

SPKI name certificates in place of X.509 certificates. 

TLS currently uses X.509 certificates, which are functionally identical to SPKI 

name certificates.  Consequently, SPKI certifications can be easily substituted (27).  

Furthermore, the strand space theory is ideal for the analysis of public key protocols and 

in particular to the Diffie-Hellman key agreement protocol (17).  The integrity of TLS 

executing with sub-protocols is a concern; however, it fits the model of the mixed strand 

space formalism defined in (28) and can be analyzed in a mixed strand space. 

4.2.1 Certificate Chain Validation Protocol Design. 

In the standard TLS, there is no way for the client to specify what type of 

certificate he requires the server to supply for authentication.  In practice, this is 

accommodated by the use of global or far-reaching certificate authorities that are for the 

most part universally recognized.  In an SPKI TLS application, an unprompted certificate 

chain may end at a certificate authority the client has no knowledge of.  To accommodate 

this problem, it will be assumed that the initial message exchange used to coordinate 

which protocols to use will also coordinate a certificate base for the server to provide a 

certificate chain.  For example, the standard ClientHello message contains two arrays 

specifying cipher suites and compression methods (23:34-35).  To accommodate SPKI 

TLS, a third array of high level authorities can be included to identify which sources of 

trust this client will work with.  Thus, the server still retains the option of choosing how 
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the connection is made, what methods of security to implement and in addition can 

decide if it can provide a certificate chain to any of the client’s known authorities.  

Adding this certificate chain to this analysis is hidden by the degree of abstraction; 

however, if it were explicitly represented it would appear in the first message sent from 

the client concatenated with Tc (Figure 3). 

Furthermore, the standard TLS protocol assumes that certificates can be validated 

offline.  However, realistically, offline validation introduces security concerns in the form 

of stale revocation lists and compromised keys.  To overcome these problems, certificates 

can be checked online, thus eliminating delays in revocation and validation.  TLS can use 

SPKI to solve this problem if it is augmented to accommodate the frequent validation of 

certificates via the SPKI hierarchy of certificate authorities.  This will necessarily include 

the addition of a protocol between a client and an authority which may need to execute as 

a sub-protocol.  The inclusion of this protocol will allow TLS to accommodate online 

validation.  The SPKI standard currently has no protocol specification for certificate 

chain validation, and thus one is developed here and will be integrated into the TLS 

model used in analysis. 

The term certificate chain discovery appears in several contexts with regard to 

SPKI and thus it is important to distinguish them.  First, the SPKI standard provides a 

tractable algorithm called Certificate Chain Discovery for a principal to sift through 

owned certificates in order to provide a minimal certificate chain.  The second use of this 

term is in the TLS standard.  A principal uses certificate chains, similar to those of SPKI, 

to trace a certificate from its CA to the principal providing it.  In order to avoid 
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confusion, the protocol designed here for certificate chain discovery will be called the 

Certificate Chain Validation protocol (CCV). 

CCV requires two regular participants, a solicitor and an authority.  It is assumed 

that the authority is an issuer of certificates, whereas the solicitor is providing a 

certificate to be verified. 

The solicitor requires the authority to be authenticated.  By authenticating the 

authority, the solicitor is assured of the authority’s identity and hence assured of that 

authority’s response to the validity of the certificates.  It is assumed that a regular 

principal playing the role of the authority will respond only to certificates it has created 

and will respond only with accurate assessments of presented certificates. 

The following procedure uses authentication tests as a guide to protocol design 

(29).  To satisfy the security goals of the CCV protocol, the solicitor provides an 

incoming test for the authority to validate.  The easiest method of supplying a test is to 

provide a certificate verifiable by the authority along with a nonce Ns to be returned 

signed with the authority’s private key.  If the set of keys used in CCV is not known to 

the penetrator and the incoming test is returned then, this test verifies the certificate.  By 

Theorem 2 it is deduced that only a regular participant could have returned a signed 

certificate validation.  Based on the assumed behavior of regular principals, only a 

certificate authority would sign and return such a value.  Furthermore, the only certificate 

authority with the nonce Ns and access to the private key corresponding to the certificate 

being validated is the principal acting as the authority.  Therefore, the certificate is 

validated by the authority and the solicitor can continue with the remaining certificates 
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until the chain is completely verified.  The strand space representation of the CCV 

protocol is depicted in Figure 5 and the principal traces are in Table 8. 

 

Figure 5 Certificate Chain Validation Protocol 
 

Table 8 Certificate Chain Validation Protocol Principals 
Principal Signature Strand Trace 

Solicitor[NS kc[]] +  NS kc[],- [NS kc[]]ka  

Authority[NS kc[]] −  NS kc[],+ [NS kc[]]ka  

4.3 TLS Strand Space Analysis 

Analysis of the TLS strand space proceeds as follows.  Strand space proofs are 

applied to the base protocols of TLS in isolation to prove their security properties.  Next, 

the sub-protocols operating under the base model are proven to have protocol 

independence.  This allows the conclusion that all security properties of the TLS protocol 

are maintained even when operating with the CCV and Resume Session protocols. 

The theorems below prove authentication for the TLS base protocols, Server 

Authentication Protocol and Server & Client Authentication protocol.  All of the 

following proofs assume the conditions listed in Table 9. 
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Table 9 Strand space assumptions 

A bundle  over the TLS strand space 

Signed messages and encryption form a disjoint set to the set of keys used in the 
protocol 

The set of keys known to the penetrator KP is disjoint from the set of keys K 

The set of penetrator known DH values is disjoint from those used in the protocol 

Hashing functions are chosen such that they are computationally infeasible to find 
two distinct inputs which hash to a common value and if given a hash value, it is 
similarly infeasible to predict the inputs (30) 

The Diffie-Hellman problem is hard 

 

 Theorem 1 Origination of Cryptographic Terms 

If k ∈  K, and for all nodes in , k is never a sub-term of that node, then any term 

h ∈  A signed or encrypted with k must originate on a regular strand. 

Proof:  If {h}k or [h]k originate on an adversary strand, they must originate on 

either an E or σ strand, as they are the only strands that create new cryptographic terms.  

For these strands to do this, k ∈  KP.  However, this contradicts the assumption that KP is 

disjoint from the set K. 

Theorem 2 Signature Origination 

If k ∈  K, and for all nodes in , k is never a sub-term of that node, then for any 

[h]k ∈  A, if [h]k originates on any node then there is exactly one regular principal that 

created that value, and furthermore the principal associated with the originating strand 

corresponds to the public key used to read h. 

Proof: Based on Theorem 1, [h]k must originate on a regular strand.  Furthermore, 

only regular strands have access to their own private keys.  Thus, since each principal is 
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represented uniquely by the inverse of their private key, any term signed is guaranteed to 

come from exactly one principal strand in the strand space. 

4.3.1 Isolated TLS. 

Theorem 3 SAP Authentication 

Let  be a bundle consisting of SAP Client, SAP Server, and penetrator strands.  

Assume that k′ is not known to the penetrator.  Then, if  contains some strand Client[Tc, 

Sc, Ts, Ss, ks[], ds, dc] then  must also contain a strand Server[Tc, Sc, Ts, Ss, ks[], ds, dc] 

with a height of four whose identity is associated with the public key ks.  Furthermore, the 

server’s actions are explicitly in response to the client’s and all messages of the protocol 

are received un-altered. 

Proof:  The second message of the protocol contains a signed DH constructor.  

Based on Theorem 2, the reception of this term by the client assures the client that this 

DH constructor was created by the server whose public key is ks.  Knowing that this was 

created by that particular server, however, is not sufficient: it must also be proven that the 

message was produced with the intent to continue this particular run of the protocol.  This 

is accomplished with an authentication test. 

The edge connecting n2 and n3 of the client strand is an outgoing test for the value 

of the End[] function, N0.  The test component for this authentication test is thus {N0}k′.  

Since the DH problem is  hard, the only two principals capable of creating the key k′ are 

those participating in the exchange.  Furthermore, because N0 is an ingredient of k′, the 

only two principals capable of creating N0, are also those participating in the exchange.  

Since regular principals act according to the protocol and according to a regular protocol 

43 



 

run, N0 is only contained in this encrypted message.  Therefore, it can be deduced that N0 

uniquely originates at node n3 of the client strand.   

Additionally, the test component {N0}k′ never appears as a proper sub-term of any 

regular component.  Assume for a moment that {N0}k′ is a proper sub-term of test 

components which use it as an ingredient.  As a sub-term, {N0}k′  is obtainable through 

some combination of decryption, separation, joining or concatenation.  In the SAP 

protocol, the only use of {N0}k′  is as an ingredient to the hash functions.  Thus, to obtain 

this component, the inverse of the End[] function must be calculated.  However, this 

contradicts the assumption that the hash functions used are probabilistically unpredictable 

and irreversible.  Therefore, {N0}k′  is not a proper sub-term of any node in the bundle. 

To fulfill the outgoing test, the server must decipher the message and return N0 in 

a context outside of the encryption it was received in, i.e. the server must provide a 

transforming edge on the test component.  This is accomplished in message four sent by 

the server between nodes n3 and n4.  The new context is provided by the End[] function 

result N1.  Using N0 as an ingredient for N1, it is presented in a new context only 

producible by principals who know the key k′.  By returning N1, the server proves that he 

has deciphered the message and created a response to the test component recently. 

To review, the original test component of message three is never the sub-term of a 

previous node, its sub-terms uniquely originate on the node sending it and the sub-term 

N0 is returned in a new context outside of the sent component.  Therefore, this component 

qualifies as a test component, nodes n3 to n4 represent an outgoing test and thus the client 

authenticates the server as not only the server associated with the key ks, but also the 

other participant in this particular protocol execution. 
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Furthermore, since regular participants only act according to protocol 

specifications, the only server node that produces a message of this composition is n4.  

Therefore the server strand must have a height of at least four.  Additionally, because the 

history array used to build N1 includes all previously sent messages and is built with 

secret values only known by the participants of this protocol, the client is provided with 

the guarantee that all messages sent and received have not been altered by a third party.  

If the messages where altered, the verification of hash values would reveal this and the 

protocol would not continue.   

Thus, the SAP protocol assures the client of three things: first, the server’s 

identity is that associated with ks; second, that server is executing this protocol in 

response to the client’s requests and not some other run of the protocol; and third, all four 

messages are received un-altered by any third party. 

Theorem 4 SCAP Server Authentication 

Let  be a bundle consisting of SCAP Client, SCAP Server, and penetrator 

strands.   Then, if  contains some strand Client[Tc, Sc, Ts, Ss, ks[], ds, kc[], dc] then  

must also contain a strand Server[Tc, Sc, Ts, Ss, ks[], kc[], ds, dc] with a height of four 

whose identity is associated with the public key ks.  Furthermore, the server’s actions are 

explicitly in response to the client’s and all messages of the protocol are received un-

altered. 

 Proof:  The proof for this theorem is analogous to that of Theorem 3.  The only 

cryptographic difference in the SCAP and SAP protocols is that the DH constructor 

provided by the client is now a signed term.  However, that signed term only becomes 

important when proving client authentication. 
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  To begin, the signed DH constructor supplied by the server provides the client with 

sufficient proof that the sender of that term was the server associated with the key ks via 

Theorem 2.   

Similarly, {N0}k′ provides an authentication test for the server.  Through the same 

logic as before, this component is never the sub-term of a previous node, its sub-terms 

uniquely originate on the node sending it and the sub-term N0 is returned in a new 

context outside the sent component.  Consequently, the client can authenticate the server 

as participating in this particular execution of the protocol and as the particular server 

associated with ks.  

Once again the composition of the message digest provides a guarantee of 

message agreement.  Thus, the SCAP protocol assures the client that the server is ks, is 

running this protocol in response to the client’s messages, and all messages have been 

received un-altered.  

Because the SCAP protocol is designed to provide mutual authentication it is also 

necessary to prove that SCAP authenticates the existence of a particular client given a 

server strand. 

Theorem 5 SCAP Client Authentication 

Let  be a bundle consisting of SCAP Client, SCAP Server and penetrator 

strands.  Assume that k′ is not known to the penetrator.  Then, if  contains some strand 

Server[Tc, Sc, Ts, Ss, ks[], kc[], ds, dc], then  must also contain a strand Client[Tc, Sc, 

Ts, Ss, ks[], ds, kc[], dc] of height at least three. 

Proof:  Theorem 2 allows the server to identify the DH constructor supplied in 

message three as an incoming value provided at some previous time by the client 
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associated with the public key kc.  However, authentication once again must be deduced 

from an authentication test via a test component. 

The authentication takes place between nodes n2 and n3 of the server strand and is 

an incoming test.  In this case the test value a is message digest N0. 

The test value N0 encrypted with k′ is the test component that fulfills the incoming 

authentication test.  To qualify as a test component, {N0}k′ must not be the proper sub-

term of any other term in the bundle and must contain a uniquely originating value as a 

sub-term.  Using the same logic as in Theorems 3 and 4 this component is not a proper 

sub-term of any term in . 

To show that N0 is a uniquely originating value, recall that the ingredients of N0 

include the generated secret key k′.  Because the DH problem is hard, the only principals 

that know this key are the regular principals executing this protocol.  Therefore, the 

generation of the digest using this key is a unique value.  Furthermore, since regular 

principals act only according to the protocol standard, through inspection of the strand 

trace it can be seen that only the client strand will create the message digest N0.  Thus, the 

test value N0 is a uniquely originating value in the strand space. 

Additionally, for the same reasons as shown in previous theorems, N0 also 

provides agreement on all previously sent messages.  Thus, the server is assured the client 

is that associated with the key kc, is responding to this particular execution of the 

protocol, agrees with the first three messages of the SCAP protocol and is of height at 

least three. 

As an interesting side note, despite the strong agreement on the first three 

messages the server has no guarantee the client receives the last message.  Because there 
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is no response to the final message, let alone one including a means of authentication, it is 

impossible for the server to know if the client received the last message.  This, however, 

does nothing to weaken the authentication of the previous messages and is more of an 

inconvenience peculiar to the sender of the final message of a protocol. 

4.3.2 Isolated Resume. 

Theorem 6 Resume Server Authentication 

Let  be a bundle consisting of Resume Session client, server and penetrator 

strands in addition to SCAP or SAP strands.  If  contains some client strand Client[Tc, 

Sc, Ts, Ss] then  must also contain a strand Server[Tc, Sc, Ts, Ss] of height at least two 

that agrees on all messages of a particular SCAP or SAP protocol. 

Proof:  The edge connecting nodes n1 and n2 acts as an incoming authentication 

test to authenticate the server to the client.  The test value is the result of the message 

digest Nx+1, where x is the number of previously sent message digests from the protocol 

session being resumed.  The test component for this test is the encrypted portion of 

message 2, {Nx+1}k′.  To be a test component, it cannot by a proper sub-term of any other 

messages in  and must contain a value a that uniquely originates on the n1. 

Assume {Nx+1}k′ is a proper sub-term of a message in .  Through observation it 

is clear that this component is not included in any other message other than as an 

ingredient.  In particular as an ingredient in message digest Nx+2.  To extract this from the 

digest the DH key k′ must be compromised and the digest must be reversed.  However, 

this contradicts the assumption that the DH problem is hard and that the hash functions 

are irreversible.  Thus {Nx+1}k′ is not a proper sub-term of any other messages in . 
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The node n1 does not supply explicitly a uniquely originating value, however, it 

does provide a constructor such a value.  Message one of the protocol provides an 

additional entry to the history[] array used to compose Nx+1.  Based on the assumption 

that hash functions are unpredictable Nx+1 must be a uniquely originating value. 

Therefore, the component {Nx+1}k′ is a test component for the incoming test over 

the nodes n1 and n2 of the client strand and nodes n1 and n2 of the server strand are the 

transforming edge which satisfy the test.  This allows the client to conclude that this 

execution of the Resume protocol is in response to the messages the client initiated. 

A validated message digest, as discussed in previous theorems, indicates 

agreement on all previously sent messages.  In this case a message digest will be built 

with the messages from a previous SCAP or SAP session.  Because both of these 

protocols authenticate the server, the successful execution of either reveals to the client 

the identity of the server, ks, via Theorem 3 or Theorem 4 respectively. 

Thus, given a client strand, there must exist a server strand of at least height two 

that is participating in this particular execution of the protocol, is authenticated as the 

server corresponding to the public key ks of the resumed session and agrees on all 

previously sent messages of the same resumed session. 

Theorem 7 Resume Client Authentication. 

Let  be a bundle consisting of Resume Session client, server and penetrator 

strands in addition to either SCAP or SAP strands containing a complete run of the 

respective protocol.  If  contains some server strand Server[Tc, Sc, Ts, Ss] then  must 

also contain some strand Client[Tc, Sc, Ts, Ss] that agrees on all messages of resumed 

protocol. 
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Proof:  This proof is very similar to that of Theorem 3.   The test being 

accomplished is an outgoing test over the nodes n2 and n3.  The test value is Nx+1 and the 

test component is {Nx+1}k′, where x is the number of previously sent message digests 

from the protocol session being resumed.  Based on the same arguments for the message 

digest in Theorem 3, this value is not a proper sub-term and contains a uniquely 

originating value in the digest Nx+1.  

 The corresponding client strand must extract this value and return it in a new 

context via a transforming edge.  This is done in message three between nodes n2 and n3 

of the client strand.  The new context is provided by the digest Nx+2.  Because this value 

uses the test value as an ingredient and is encrypted with the shared secret key k′, the 

client proves that he has deciphered the message and created an appropriate response to 

the test.  Therefore, this component authenticates the client as the principal executing the 

other half of this particular protocol run. 

The identity of the client, however, is a more delicate matter.  Through inspection 

of the history array used in constructing message digests, the server can search for a 

client supplied DH constructor.  If the included strands are SCAP strands, then the DH 

constructor will be signed with the key kc.  In this case, the server can authenticate not 

only that the client is running this particular session of the protocol but also that the 

client’s identity is that associated with kc.  On the other hand, if the strands are a SAP 

execution, then the DH constructor is not signed and the best the server can do is to 

guarantee that this execution is being accomplished with the same client as the resumed 

protocol, but cannot authenticate the identity of that client. 
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4.3.3 Isolated CCV. 

Theorem 8 CCV Authentication. 

Let  be a bundle consisting of CCV Solicitor, CCV Authority and penetrator 

strands then, if  contains some strand Solicitor[NS kc[]], then  must also contain a 

strand Authority [NS kc[]] and the assessment of the link of the certificate chain, kc[], is 

accurate. 

Proof:  This protocol was built with an authentication test in mind and thus is a 

relatively straight forward proof.  The test value is the uniquely originating nonce Ns 

supplied in message one of the protocol.  It is assumed that the solicitor can provide an 

unpredictable nonce Ns such that the value is uniquely originating.  The authentication 

test is an incoming test over the edges n1 and n2.  The test component returned is the 

entire second message of the protocol {Nskc[]}ka.  Furthermore, due to the simplicity of 

the protocol from inspection it can be seen that no other messages contain the component 

{Nskc[]}ka as a sub-term.  Thus, the component qualifies as a test component because it 

includes a uniquely originating value and is not a sub-term of any other message in . 

In order to complete this incoming test, the authority must provide a transforming 

edge.  The new value Ns is received in the clear-text of message one.  It is placed in a new 

cryptographic context within the test component thus satisfying the transforming edge 

and completing the authentication test.   Theorem 2 applied to message two identifies the 

authority as the particular principal associated with ka. 

Therefore, the solicitor, through an incoming test, authenticates the authority as 

running this protocol in response to the protocol initiation by the solicitor and the 

authority is the particular principal associated with the key ka.  Recall the assumption 
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originally made in Section 4.2.1 that a regular principal playing the role of the authority 

will respond only to certificates it has created and will respond only with accurate 

assessments of presented certificates.  Based on this assumption, the assessment of this 

link of the certificate chain is valid.  Thus, given a solicitor strand executing the CCV 

protocol, there exists an authority ka that corresponds with that particular execution of the 

protocol and provides a valid certificate assessment. 

4.4 TLS Protocol Independence 

To prove protocol independence the base and the sub-protocols must be compared 

against the properties required for disjoint encryption.  The two base protocols will be the 

SAP and the SCAP protocols.  To prove that each protocol execution is independent, it is 

required to prove that the two base protocols are independent of each sub-protocol.  Once 

these relationships are proven to be independent, it can be concluded that the TLS 

protocol running CCV and Resume protocols have the same security properties as the 

TLS protocol running in isolation.   

4.4.1 SAP, Resume & CCV. 

To prove that the SAP-Resume-CCV strand space retains the security properties 

of the SAP strand space, it must be shown that all secondary strands exhibit disjoint 

encryption with SAP.  The set of secondary strands Σ2 consists of a proper subset of the 

strands from the Resume (Σres) and CCV (Σccv) protocols. 

To begin, the CCV protocol was designed to provide the needed security 

assurances while avoiding potential problems with the SAP protocol.  Consequently, it 

shares no terms either as sub-terms or terms with the same signature as those in the SAP 
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protocol.  Similarly, it does not originate any texts or keys vital to the privacy of the 

primary protocol.  That is to say, there are no encrypted terms t such that t  term(n1) and 

t  term(n2), for n1∈Σ1 and n2∈Σccv.  The same is true for disjoint inbound encryption.  

Therefore, the CCV exhibits disjoint encryption with the SAP. 

To complete the proof, the set of strands of the Resume Session protocol must 

also be proven to be disjoint with the SAP.  No new components of the Resume Session 

protocol contain, as sub-terms, private values from the SAP protocol.  The construction 

of the message digest uses private values, however, they are not retrievable from the 

components, and thus not considered sub-terms.  Therefore, there is no positive node in  

Σres that uses private values as sub-term of new components, therefore, the Resume 

Session protocol exhibits disjoint outbound encryption with respect to SAP.   

For disjoint inbound encryption there cannot be a node such that a private 

encryption occurs as a new component on Σres that also occurs on the SAP.  The only 

encrypted component generated by the Resume Session protocol is {End[server]}k′.  

Although this component matches the signature of components found in the primary 

protocol, i.e. in messages three and four, the nature of the End function means that this is 

a new component.  That is to say that this is a uniquely originating component that is 

distinguishable from all other occurrences of the message {End[server]}k′.  

Consequently, the Resume Session protocol exhibits disjoint outbound encryption. 

Since the Resume Session protocol exhibits both inbound and outbound disjoint 

encryption it also exhibits disjoint encryption.  Furthermore because all subsets of Σ2 

exhibit disjoint encryption with SAP, Σ2 exhibits disjoint encryption with SAP. 
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Finally, since no atomic text or key originates on secondary nodes of the mixed 

strand space, there is an equivalent strand space which has an arbitrary amount of M and 

K strands.  Since these values are incapable of interacting with the Σ2, the strand space is 

said to be full.  Therefore, all protocols of the mixed SAP strand space are considered to 

be independent. Thus, all properties of these protocols are preserved when executing the 

SAP with Resume Session and CCV as sub-protocols. 

4.4.2 SCAP, Resume & CCV. 

The proof of protocol independence for the SCAP is identical to that of the SAP 

proof.   This is provable by identifying the difference in terms of the SAP and SCAP 

protocols and showing that these provide no new terms that interfere with disjoint 

encryption in the sub-protocols. 

Table 10 Term differences in TLS base protocols 
New Term in SCAP Corresponding term in SAP 

Tcert - 

kc[] - 

[dc]kc dc 

 

The terms which differ in the SCAP and the SCAP are identified in Table 10.  

None of these terms are secret values and they share no common signatures with the sub-

protocols Resume Session and CCV.  Therefore, Σ2 exhibits disjoint outbound 

encryption.  Similarly, since none of these are private encryptions, there cannot be a new 

component in Σ2 that produces a private encryption that is in this set.  Therefore Σ2 also 

exhibits disjoint inbound encryption.  Furthermore, the set of secondary strands Σ2 
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exhibits disjoint encryption to the SCAP.  The same reasoning as above allows this mixed 

strand space to be considered full.  Finally, a full strand space with disjoint encryption 

exhibits protocol independence.  Consequently, the SCAP protocol is independent of the 

Resume Session and CCV protocols and thus the mixed strand space that contains all of 

these protocols exhibits the same properties as any of the protocols in isolation.
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V. Final Words 

5.1 Summary 

The goal of this work was to assemble a method to integrate the Simple Public 

Key Infrastructure (SPKI) into an application and provide security analysis of the result.  

Strand space authentication tests were used to provide a guide to SPKI application 

design.  The authentication tests supplied a well-grounded formal method of protocol 

generation and analysis.  The result was that the security properties of the new protocol 

designed were direct implications of the security goals. 

Overall, strand space was found to be an excellent tool for SPKI analysis because 

it provided an explicit model of PKI protocol environments as well as a means for 

analyzing the protocols interacting with one another.  In unison, these properties are an 

ideal model for SPKI protocol design and analysis. 

As a demonstration of the assembled model, SPKI was integrated into the 

Transport Layer Security protocol.  The TLS protocol was chosen due to its popularity, 

its security goals, and its reliance on a PKI.  The two TLS protocols examined where the 

Server Authentication Protocol and the Server & Client Authentication protocol.  As 

anticipated, each was proven in isolation to provide authentication to their respective 

principals. 

The strand space based method of authentication tests as a means of protocol 

design furthered the example by providing a way to integrate SPKI functionality into the  

56 



 

TLS protocol.  Authentication tests were used to create the Certificate Chain Validation 

protocol used to validate certificates being used by the TLS protocol. 

Furthermore, utilizing the ability of strand space to analyze multiple protocols 

operating in the same environment TLS was proven to be independent of its sub-

protocols.  This then led to the proofs that TLS running its own Session Resume protocol 

and the newly created CCV protocol has the same security properties as TLS operating in 

isolation. 

5.2 Future Work 

5.2.1 Security Policy Design. 

A key feature of SPKI is its ability to delegate authority for access control, 

certificate distribution or any other definable authorization.  Due to this flexibility, there 

is the additional concern of security policy design.  When is it reasonable to delegate an 

authorization?  Furthermore, is there an ideal method for developing the hierarchy of 

delegation?  Perhaps an inductive proof method can be derived to establish a logic for 

building the desired hierarchy or possibly a means of recursively building and checking 

the tree during policy design and certificate distribution. 

5.2.3 Performance Based Analysis. 

Using SPKI in place of other public key technologies may result in additional 

overhead.  One such overhead could be excessive network traffic.  In the TLS example 

explored above, execution of the certificate chain validation protocol will result in 

network traffic.  If each principal of a network is required to check a dozen certificates 
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per interaction the network traffic may build.  A model of this traffic and the demands it 

places on a network could be a valid topic of future SPKI research.  

5.2.4 Hardware Demands. 

Since the SPKI standard allows for principals to create their own keys, will this 

place further demands on the hardware necessary for SPKI applications, and if so to what 

extent?  If a central key authority is to issue keys and certificates, what will be the 

network congestion as a result of requests to verify generated certificates or keys? 

5.2 Conclusions 

SPKI is an intriguing and flexible standard that provides an excellent framework 

for PKC.  Due to the brevity of its specification, a good deal of care must be taken in 

application integration.  However, if attention is paid to an application’s desired security 

goals SPKI can offer a provable and flexible solution. 

The strand space theory has proven to be an invaluable tool both in the analysis of 

protocols and their design.  Strand space graphs are a clear and concise means of 

representing both simple and obscure protocols.  Furthermore, the inductive nature of 

strand space proofs provide not only analysis of protocol correctness, but also reasoning 

why a protocol may fail.  This concept can then be carried into the analysis and 

construction of new protocols to avoid the same security problems in the future. 
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Appendix A:  Strand Space Protocol Example 

The following is the strand space representation of the Simple Protocol.  The 

Simple Protocol consists of two brothers, Cyril and Dmitri passing information to and 

from one another.  Dmitri begins by asking Cyril to send him the location of their secret 

hideout (M1).  Cyril responds by encrypting a message detailing where the hideout is 

using Dmitri’s public key,{M2}KD.  Dmitri in turn encrypts a new message telling Cyril 

what to bring to the hideout at their next meeting {M3}KC.  The graphical representation 

of this protocol in strand space is in Figure 6. 

 

Figure 6 the Simple Protocol 
 

Nodes n1 and m1 both share the same term M1.  However, n1 is a positive (sending) node 

and m1 is a negative (receiving) node.  The vertical path from n1 to n3 represents the 

strand of Dmitri.  The edge between n2 and n3 represents Dmitri deciphering Cyril’s 

encryption extracting the information and enciphering his own message to send off.  The 

actual act of sending the messages is captures along the edges between the n and m 

nodes. 
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